33 research outputs found

    Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019

    Get PDF
    In the context of the energy transition, energy system planning is becoming increasingly relevant for decentralized systems. Motivated by the strong increase of publications on municipal energy system planning (MESP), these studies are subjected to a bibliometric analysis in this paper. The 1235 articles, which are based on the Web of Science database, are examined using the R-tool bibliometrix. The study shows that China is the most important contributor with 225 articles, followed by the USA (205) and Germany (120). Most cross-country collaborations were conducted between China and Canada, focusing mainly on uncertainties in MESP. Among the institutions, the North China Electric Power University is responsible for most articles (42). The core journals on MESP are Energy, Applied Energy, Energy Policy, Energies and Renewable Energy, which published 37% of the 1235 articles. Publications on MESP focus on renewable energies, optimization and hybrid energy systems. Furthermore, district heating seems to be a core topic in MESP and is addressed in three of the top five most cited articles. The demonstration of global research trends in MESP can support researchers in identifying the relevant issues regarding this expanding and transforming research area

    Energy system analysis of energy autonomous municipalities

    Get PDF
    Attention on decentralised autonomous energy systems has increased exponentially in the past three decades, as demonstrated by the absolute number of real-world projects and the share of publications in the corpus of scientific literature. This is due to the energy transition and the related environmental awareness as well as the desire of citizens to play an active role in energy supply and to be less dependent on central markets and structures. However, local decision-makers, who often lack the necessary expertise, need decision support in energy system planning. To this end, this thesis follows the objective to develop novel methods for the technical, economic and environmental assessment of a large number of completely energy autonomous municipalities and their impacts on the overall energy system. Completely energy autonomous municipalities are disconnected from the gas and electricity grid and supply themselves with energy from plants owned and operated by the municipality. Novel methods of energy system analysis were developed in this thesis as part of seven original research articles. Germany is used as a case study, but the general approach, methods and results are transferable to other contexts. First of all, the 11,131 German municipalities were clustered with regard to their suitability for decentralised energy systems. Based on this municipality typology, representative municipalities were selected to be investigated in an already existing holistic municipal energy system optimisation model (RE³ASON). This model was extended by novel and transferable approaches to design deep geothermal plants and district heating networks. These base-load capable technologies were selected to reduce the storage costs in energy autonomous municipalities. The technical feasibility and economic expenditures of energy autonomy could finally be determined in all 11,131 German municipalities by combining the extended energy system optimisation model with a stepwise linear regression. The energy system optimisations showed that in the case of complete energy autonomy, deep geothermal plants in combination with district heating networks could reduce the total costs by up to 50%. On average, the energy system costs until 2030 in German municipalities increase by about 0.41 €/kWh in the energy autonomous case compared to the optimised reference case with grid connection. While a technical potential to achieve energy autonomy is present in 56% of the German municipalities, there seem to be no economic advantages through energy autonomy compared to the optimised reference energy system. The novel methodological approach of this thesis enabled to obtain optimisation results for a high number of energy systems (6,314 municipalities) with practicable computational expenses. In addition to the original data and planning tools published alongside the articles, the findings of this thesis can also support local decision makers in determining suitable municipal energy systems. In order to increase the realizability of the case study results, some methodological extensions should be investigated in future studies such as other perspectives than that of a central planner, higher temporal model resolutions or social aspects like consumer acceptance of specific technologies or a security of supply below 100%

    Reviewing local and integrated energy system models : insights into flexibility and robustness challenges

    Get PDF
    Funding Information: The contribution by Jann M. Weinand was supported by the Helmholtz Association under the program “Energy System Design”. Acknowledgements The contribution by Jann M. Weinand was supported by the Helmholtz Association under the program “Energy System Design”.Peer reviewedPublisher PD

    An efficient solver for multi-objective onshore wind farm siting and network integration

    Full text link
    Existing planning approaches for onshore wind farm siting and network integration often do not meet minimum cost solutions or social and environmental considerations. In this paper, we develop an approach for the multi-objective optimization of turbine locations and their network connection using a Quota Steiner tree problem. Applying a novel transformation on a known directed cut formulation, reduction techniques, and heuristics, we design an exact solver that makes large problem instances solvable and outperforms generic MIP solvers. Although our case studies in selected regions of Germany show large trade-offs between the objective criteria of cost and landscape impact, small burdens on one criterion can significantly improve the other criteria. In addition, we demonstrate that contrary to many approaches for exclusive turbine siting, network integration must be simultaneously optimized in order to avoid excessive costs or landscape impacts in the course of a wind farm project. Our novel problem formulation and the developed solver can assist planners in decision making and help optimize wind farms in large regions in the future

    Exploring the trilemma of cost-efficiency, landscape impact and regional equality in onshore wind expansion planning

    Get PDF
    Onshore wind development has historically focused on cost-efficiency, which may lead to uneven turbine distributions and public resistance due to landscape impacts. Using a multi-criteria planning approach, we show how onshore wind capacity targets can be achieved by 2050 in a cost-efficient, visually unobtrusive and evenly distributed way. For the case study of Germany, we build on the existing turbine stock and use open data on technically feasible turbine locations and data on scenicness of landscapes to plan the optimal expansion. The analysis shows that while the trade-off between optimizing either cost-efficiency or landscape impact of the turbines is rather weak with about 15% higher costs or scenicness, an even distribution has a large impact on these criteria. However, a more evenly distributed expansion is necessary for the achievement of the targeted south quota, a policy target that calls for more wind turbine additions in southern Germany. Our analysis assists stakeholders in resolving the onshore wind expansion trilemma

    An expert survey to assess the current status and future challenges of energy system analysis

    Get PDF
    Decision support systems like computer-aided energy system analysis (ESA) are considered one of the main pillars for developing sustainable and reliable energy strategies. Although today\u27s diverse tools can already support decision-makers in a variety of research questions, further developments are still necessary. Intending to identify opportunities and challenges in the field, we classify modelling topics into modelling capabilities (32), methodologies (15), implementation issues (15) and management issues (7) from an extensive literature review. Based on a quantitative expert survey of energy system modellers (N = 61) mainly working with simulation and optimisation models, the Status of Development and the Complexity of Realisation of those modelling topics are assessed. While the rated items are considered to be more complex than actually represented, no significant outliers are determinable, showing that there is no consensus about particular aspects of ESA that are lacking development. Nevertheless, a classification of the items in terms of a specially defined modelling strategy matrix identifies capabilities like land-use planning patterns, equity and distributional effects and endogenous technological learning as “low hanging fruits” for enhancement, as well as a large number of complex topics that are already well implemented. The remaining “tough nuts” regarding modelling capabilities include non-energy sector and social behaviour interaction effects. In general, the optimisation and simulation models differ in their respective strengths, justifying the existence of both. While methods were generally rated as quite well developed, combinatorial optimisation approaches, as well as machine learning, are identified as important research methods to be developed further for ESA
    corecore